Chapter 30: Plant Nutrition & Transport

Carnivorous Plants

- Capture animals to supplement their nutrient intake
- Venus flytrap lures insects with sugary bait;
 closes on victim
- Cobra lily lures insects down a one-way passage

Carnivorous Plants

© 2006 Thomson Higher Education

Plant Nutritional Requirements

- Nearly all plants are photoautotrophs
- Require carbon dioxide, water, minerals
- Many aspects of plant structure are responses to low concentrations of these vital resources in the environment

Table 30.1 Plant Nutrients and Symptoms of Deficiencies

No symptoms; all three macronutrients are available Carbon in abundance from water and carbon dioxide Hydrogen Oxygen Nitrogen Stunted growth; young leaves turn yellow and die (these are symptoms of chlorosis) Potassium Reduced growth; curled, mottled, or spotted older leaves; burned leaf edges; weakened plant Calcium Terminal buds wither; deformed leaves; stunted roots Magnesium Chlorosis; drooped leaves Phosphorus Purplish veins; stunted growth; fewer seeds, fruits Sulfur Light-green or yellowed leaves; reduced growth Chlorine Wilting; chlorosis; some leaves die Chlorosis; yellow, green striping in leaves of grasses Iron Boron Terminal buds, lateral branches die; leaves thicken, curl, become brittle Dark veins, but leaves whiten and fall off Manganese Chlorosis; mottled or bronzed leaves; abnormal roots Zinc Copper Chlorosis; dead spots in leaves; stunted growth Molybdenum Pale green, rolled or cupped leaves

Soil

- Minerals mixed with humus
 - Minerals come from weathering of rock
 - Humus is decomposing organic material
- Composition of soil varies
- Suitability for plant growth depends largely on proportions of soil particles

Three Soil-Particle Sizes

- Sand
 - Largest particles
- Silt
 - Medium-sized particles
- Clay
 - Finest particles

Humus

- Decomposing organic material
- Nutrient rich
 - Negatively charged organic acids help humus attract positively charged minerals
- Absorbs water and swells; shrinks as it releases water
 - Helps to aerate soil

Table 30.2 What to Ask When Home Gardening Hits a Wall

- 1. What are the symptoms? (e.g., brown, yellow, curled, wilted, chewed leaves)
- 2. What is the species? Is part of one plant, a whole plant, or many plants affected?
- 3. Is the planting soil loose or compact? Were amendments added? Are fertilizers used, and how often?
- 4. Is watering by hand, hose, sprinklers, drip system? When and how often?
- 5. Is the plant indoors? Outdoors, in full sun or partial or full shade? In wind?
- 6. Dig gently to expose a few small feeder roots. Are they black and mushy (overwatering), brown and dry (not enough water), or white with a crisp "snap"?
- 7. Do you see insects, or insect droppings, webs, cast skins, or slime?
- 8. Some unique symptoms of infections rather than nutrient deficiencies: Viral: Leaves or petals stunted, with mottling, colored rings, distorted shapes. Bacterial: Tissues have a soaked, slimy texture, often a rotting smell.

Fungal: Leaves with dry texture, discolored spots with distinct margins, usually with concentric rings (usually tan at the center, then brown, then light yellow at edge of infection).

Optimal Soil for Plant Growth

- Loam
 - Roughly equal proportions of sand, silt, and clay

10 to 20 percent humus

Soil Horizons

- O horizon
- A horizon topsoil
- B horizon less organic material, more minerals
- C horizon no organic material

O HORIZON

Fallen leaves and other organic material littering the surface of mineral soil

A HORIZON

Topsoil, with decomposed organic material; variably deep (only a few centimeters in deserts, elsewhere — extending as far as thirty centimeters below the soil surface)

B HORIZON

Compared with A horizon, larger soil particles, not much organic material, more minerals; extends thirty to sixty centimeters below soil surface

C HORIZON

No organic material, but partially weathered fragments and grains of rock from which soil forms; extends to underlying bedrock

BEDROCK

Macronutrients

Mineral elements that are required above 0.5 percent of the plant's dry weight

Carbon

Nitrogen

Magnesium

Hydrogen

Potassium

Phosphorus

Oxygen

Calcium

Sulfur

Micronutrients

Elements that are required in trace amounts for normal plant growth

Chlorine Zinc

Iron Copper

Boron Molybdenum

Manganese

Leaching

- Removal of nutrients from soil by water that percolates through it
- Most pronounced in sandy soils
- Clays are best at holding onto nutrients

Leaching

© 2006 Brooks/Cole - Thomson

Root Structure & Absorption

- Roots of most flowering plants have:
 - Endodermis surrounds vascular cylinder
 - Exodermis just below surface
- Both layers contain a Casparian strip
 - Controls the flow of water and nutrients

Casparian Strip

- Prevents water and solutes from passing between cells into vascular cylinder
- Water and solutes must flow through cells
- Transport proteins control the flow

Root Hairs

Extensions from the root epidermis

 Greatly increase the surface area available for absorption

Root Hairs

Fig. 30-5a, p.514

Root Nodules

- Swelling on the roots of some plants
- Contain nitrogen-fixing bacteria
- Bacteria convert nitrogen gas to forms that plants can use

Mycorrhizae

- Symbiosis between a young plant root and a fungus
- Fungal filaments may cover root or penetrate it
- Fungus absorbs sugars and nitrogen from the plant
- Roots obtain minerals absorbed from soil by fungus

Water Use and Loss

- Plants use a small amount of water for metabolism
- Most absorbed water lost to evaporation through stomata in leaves
- Evaporation of water from plant parts is transpiration

Three adjoining members of a vessel. Thick, finely perforated walls of these dead cells connect as long vessels, another type of water-conducting tube in xylem.

Perforation plate at the end wall of one type of vessel member. Perforated ends allow water to flow unimpeded.

Cohesion-Tension Theory of Water Transport

- Transpiration creates negative tensions in xylem
- Tensions extend downward from leaves to roots
- Hydrogen-bonded water molecules are pulled upward through xylem as continuous columns

Transpiration Drives Water Transport

Water evaporates from leaves through stomata

This creates a tension in water column in xylem

Figure 30.8.a,b Page 517

Replacement Water is Drawn in through Roots

Figure 30.8.c Page 517

Fig. 30-8a1, p.517

mesophyll (photosynthetic cells)

Transpiration
is the evaporation of
water molecules from
aboveground plant
parts, especially at
stomata. The process
puts the water in
xylem in a state of
tension that extends
from roots to leaves.

The driving force of evaporation in air

© 2006 Brooks/Cole - Thomson

For as long as water molecules continue to escape by transpiration, that tension will drive the uptake of replacements from soil water.

Ongoing water uptake at roots

© 2006 Brooks/Cole - Thomson

Osmosis and Wilting

- Water responds to solute concentrations; moves osmotically into plant cells
- When water loss is balanced by osmotically induced movement inward, plant is erect
- If water concentration of soil drops, inward movement stops, plant wilts

The Role of Hydrogen Bonds

- Hydrogen bonds attract the hydrogen of one water molecule to the -OH group of another
- Hydrogen bonds make water cohesive; water molecules stick together inside the narrow xylem walls as the molecules are pulled upward

© 2006 Thomson Higher Education

Fig. 30-9a, p.518

Cuticle

- Translucent coating secreted by epidermal cells
- Consists of waxes in cutin
- Allows light to pass though but restricts water loss

Stomata

- Openings across the cuticle and epidermis;
 allow gases in and out
- Guard cells on either side of a stoma
- Turgor pressure in guard cells affects opening and closing of stomata

Fig. 30-11a, p.519

chloroplast (guard cells are the only epidermal cells that have these organelles)

20 μm

Control of Stomata

- Close in response to water loss
- ABA binds to receptors on guard cell membranes
- Calcium ions flow into cells
- Chloride and malate flow from cytoplasm to extracellular matrix
- Potassium ions flow out
- Water moves out of guard cells

Fig. 30-13c, p.519

CAM Plants

- Most plants are C3 or C4 plants
 - Stomata open during day and photosynthesis proceeds
- CAM plants are better at water conservation
 - Stomata open at night and carbon dioxide is fixed
 - Next day, stomata remain closed while carbon dioxide is used

Phloem

- Carry organic compounds
- Conducting tubes are sieve tubes
 - Consist of living sieve-tube members
- Companion cells
 - Lie next to sieve tubes
 - A type of parenchyma
 - Help load organic compounds into sieve tubes

one of a series of living cells that abut, end to end,and form a sieve tube

companion cell (in the background, pressed right against the sieve tube)

perforated end plate of sieve tube cell, of the sort shown in (b)

Fig. 30-14a, p.520

Transportable Organic Compounds

- Carbohydrates are stored as starches
- Starches, proteins, and fats are too large or insoluble for transport
- Cells break them down to smaller molecules for transport
 - Sucrose is main carbohydrate transported

© 2006 Brooks/Cole - Thomson

Fig. 30-14b, p.520

Transport through Phloem

- Driven by pressure gradients
- Companion cells supply energy to start process

sieve plate companion cell sieve-tube member

© 2001 Brooks/Cole - Thomson Learning

Loading at Source

Small soluble organic
 compounds
 loaded into
 phloem

Fig. 30-15, p.520